Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Tissue Engineering and Regenerative Medicine ; (6): 305-313, 2021.
Article in English | WPRIM | ID: wpr-904043

ABSTRACT

BACKGROUND@#Since primates have more biological similarities to humans than do other animals, they are a valuable resource in various field of research, including biomedicine, regenerative medicine, and drug discovery. However, there remain limitations to maintenance and expansion of primary hepatocytes derived from nonhuman primates. To overcome these limitations, we developed a novel culture system for primate cells. @*METHODS@#Primary hepatocytes from Macaca fascicularis (mf-PHs) were isolated from hepatectomized liver. To generate chemically derived hepatic progenitor cells (mf-CdHs), mf-PHs were cultured with reprogramming medium containing A83-01, CHIR99021, and hepatocyte growth factor (HGF). The bi-potent differentiation capacity of mf-CdHs into hepatocytes and biliary epithelial cells was confirmed by treatment with hepatic differentiation medium (HDM) and cholangiocytic differentiation medium (CDM), respectively. @*RESULTS@#mf-PHs cultured with reprogramming medium showed rapid proliferation capacity in vitro and expressed progenitor-specific markers. Moreover, when cultured in HDM, these progenitor cells stably differentiated into hepatocytelike cells expressing the mature hepatic markers. On the other hand, when cultured in CDM, the differentiated biliary epithelial cells expressed mature cholangiocyte characteristics. @*CONCLUSION@#The results of the present study demonstrate that we successfully induced the formation of hepatic progenitor cells from mf-PHs by culturing them with a combination of small molecules, including growth factors. These results offer a means of expanding nonhuman primate hepatocytes without genetic manipulation for cellular resource, preclinical applications and regenerative medicine for the liver.

2.
Journal of Korean Medical Science ; : e189-2021.
Article in English | WPRIM | ID: wpr-899924

ABSTRACT

Background@#Cholecystitis is an important risk factor for gallbladder cancer, but the bile microbiome and its association with gallbladder disease has not been investigated fully.We aimed to analyze the bile microbiome in normal conditions, chronic cholecystitis, and gallbladder cancer, and to identify candidate bacteria that play an important role in gallbladder carcinogenesis. @*Methods@#We performed metagenome sequencing on bile samples of 10 healthy individuals, 10 patients with chronic cholecystitis, and 5 patients with gallbladder cancer, and compared the clinical, radiological, and pathological characteristics of the participants. @*Results@#No significant bacterial signal was identified in the normal bile. The predominant dysbiotic bacteria in both chronic cholecystitis and gallbladder cancer were those belonging to the Enterobacteriaceae family. Klebsiella increased significantly in the order of normal, chronic cholecystitis, and gallbladder cancer. Patients with chronic cholecystitis and dysbiotic microbiome patterns had larger gallstones and showed marked epithelial atypia, which are considered as precancerous conditions. @*Conclusion@#We investigated the bile microbiome in normal, chronic cholecystitis, and gallbladder cancer. We suggest possible roles of Enterobacteriaceae, including Klebsiella, in gallbladder carcinogenesis. Our findings reveal a possible link between a dysbiotic bile microbiome and the development of chronic calculous cholecystitis and gallbladder cancer.

3.
Tissue Engineering and Regenerative Medicine ; (6): 305-313, 2021.
Article in English | WPRIM | ID: wpr-896339

ABSTRACT

BACKGROUND@#Since primates have more biological similarities to humans than do other animals, they are a valuable resource in various field of research, including biomedicine, regenerative medicine, and drug discovery. However, there remain limitations to maintenance and expansion of primary hepatocytes derived from nonhuman primates. To overcome these limitations, we developed a novel culture system for primate cells. @*METHODS@#Primary hepatocytes from Macaca fascicularis (mf-PHs) were isolated from hepatectomized liver. To generate chemically derived hepatic progenitor cells (mf-CdHs), mf-PHs were cultured with reprogramming medium containing A83-01, CHIR99021, and hepatocyte growth factor (HGF). The bi-potent differentiation capacity of mf-CdHs into hepatocytes and biliary epithelial cells was confirmed by treatment with hepatic differentiation medium (HDM) and cholangiocytic differentiation medium (CDM), respectively. @*RESULTS@#mf-PHs cultured with reprogramming medium showed rapid proliferation capacity in vitro and expressed progenitor-specific markers. Moreover, when cultured in HDM, these progenitor cells stably differentiated into hepatocytelike cells expressing the mature hepatic markers. On the other hand, when cultured in CDM, the differentiated biliary epithelial cells expressed mature cholangiocyte characteristics. @*CONCLUSION@#The results of the present study demonstrate that we successfully induced the formation of hepatic progenitor cells from mf-PHs by culturing them with a combination of small molecules, including growth factors. These results offer a means of expanding nonhuman primate hepatocytes without genetic manipulation for cellular resource, preclinical applications and regenerative medicine for the liver.

4.
Journal of Korean Medical Science ; : e189-2021.
Article in English | WPRIM | ID: wpr-892220

ABSTRACT

Background@#Cholecystitis is an important risk factor for gallbladder cancer, but the bile microbiome and its association with gallbladder disease has not been investigated fully.We aimed to analyze the bile microbiome in normal conditions, chronic cholecystitis, and gallbladder cancer, and to identify candidate bacteria that play an important role in gallbladder carcinogenesis. @*Methods@#We performed metagenome sequencing on bile samples of 10 healthy individuals, 10 patients with chronic cholecystitis, and 5 patients with gallbladder cancer, and compared the clinical, radiological, and pathological characteristics of the participants. @*Results@#No significant bacterial signal was identified in the normal bile. The predominant dysbiotic bacteria in both chronic cholecystitis and gallbladder cancer were those belonging to the Enterobacteriaceae family. Klebsiella increased significantly in the order of normal, chronic cholecystitis, and gallbladder cancer. Patients with chronic cholecystitis and dysbiotic microbiome patterns had larger gallstones and showed marked epithelial atypia, which are considered as precancerous conditions. @*Conclusion@#We investigated the bile microbiome in normal, chronic cholecystitis, and gallbladder cancer. We suggest possible roles of Enterobacteriaceae, including Klebsiella, in gallbladder carcinogenesis. Our findings reveal a possible link between a dysbiotic bile microbiome and the development of chronic calculous cholecystitis and gallbladder cancer.

5.
International Journal of Stem Cells ; : 183-194, 2019.
Article in English | WPRIM | ID: wpr-764083

ABSTRACT

Cholangiopathies are rare diseases of the bile duct with high mortality rates. The current treatment for cholangiopathies is liver transplantation, but there are significant obstacles including a shortage of donors and a high risk of complications. Currently, there is only one available medicine on the market targeting cholangiopathies, and the results have been inadequate in clinical therapy. To overcome these obstacles, many researchers have used human induced pluripotent stem cells (hPSC) as a source for cholangiocyte-like cell generation and have incorporated advances in bioprinting to create artificial bile ducts for implantation and transplantation. This has allowed the field to move dramatically forward in studies of biliary regenerative medicine. In this review, the authors provide an overview of cholangiocytes, the organogenesis of the bile duct, cholangiopathies, and the current treatment and advances that have been made that are opening new doors to the study of cholangiopathies.


Subject(s)
Humans , Bile Ducts , Bile , Bioprinting , Induced Pluripotent Stem Cells , Liver Transplantation , Mortality , Organogenesis , Rare Diseases , Regenerative Medicine , Tissue Donors
6.
Tissue Engineering and Regenerative Medicine ; (6): 579-586, 2017.
Article in English | WPRIM | ID: wpr-646586

ABSTRACT

Target cells differentiation techniques from stem cells are developed rapidly. Recently, direct conversion techniques are introduced in various categories. Unlike pluripotent stem cells, this technique enables direct differentiation into the other cell types such as neurons, cardiomyocytes, insulin-producing cells, and hepatocytes without going through the pluripotent stage. However, the function of these converted cells reserve an immature phenotype. Therefore, we modified the culture conditions of mouse direct converted hepatocytes (miHeps) to mature fetal characteristics, such as higher AFP and lower albumin (ALB) expression than primary hepatocytes. First, we generate miHeps from mouse embryonic fibroblasts (MEFs) with two transcription factors HNF4α and Foxa3. These cells indicate typical epithelial morphology and express hepatic proteins. To mature hepatic function, DMSO is treated during culture time for more than 7 days. After maturation, miHeps showed features of maturation such as exhibiting typical hepatocyte-like morphology, increased up-regulated ALB and CYP enzyme gene expression, down-regulated AFP expressions, and acquired hepatic function over time. Thus, our data provides a simple method to mature direct converted hepatocytes functionally and these cells enable them to move closer to generating functional hepatocytes.


Subject(s)
Animals , Mice , Dimethyl Sulfoxide , Fibroblasts , Gene Expression , Hepatocytes , Methods , Myocytes, Cardiac , Neurons , Phenotype , Pluripotent Stem Cells , Stem Cells , Transcription Factors
7.
Gut and Liver ; : 121-128, 2017.
Article in English | WPRIM | ID: wpr-85468

ABSTRACT

BACKGROUND/AIMS: Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. METHODS: A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. RESULTS: The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. CONCLUSIONS: The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.


Subject(s)
Humans , Bioprinting , Cause of Death , Gene Expression , Hep G2 Cells , Immunohistochemistry , Liver , Liver Diseases , Liver Transplantation , Methods , Microscopy, Fluorescence , Printing, Three-Dimensional , Regenerative Medicine , Tissue Donors
8.
Annals of Surgical Treatment and Research ; : 67-72, 2017.
Article in English | WPRIM | ID: wpr-8206

ABSTRACT

PURPOSE: The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. METHODS: To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6–8 weeks old mice by a 2-step collagenase method. Samples of 4 × 10⁷ hepatocytes with 80%–90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. RESULTS: Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. CONCLUSION: Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers.


Subject(s)
Animals , Mice , Collagenases , Drug Evaluation, Preclinical , Fluorescent Antibody Technique , Gene Expression , Hepatocytes , Liver , Liver, Artificial , Methods , Printing, Three-Dimensional , Real-Time Polymerase Chain Reaction
9.
Gut and Liver ; : 261-269, 2017.
Article in English | WPRIM | ID: wpr-69993

ABSTRACT

BACKGROUND/AIMS: Cancer is known to be a disease by many factors. However, specific results of reprogramming by pluripotency-related transcription factors remain to be scarcely reported. Here, we verified potential effects of pluripotent-related genes in hepatocellular carcinoma cancer cells. METHODS: To better understand reprogramming of cancer cells in different genetic backgrounds, we used four liver cancer cell lines representing different states of p53 (HepG2, Hep3B, Huh7 and PLC). Retroviral-mediated introduction of reprogramming related genes (KLF4, Oct4, Sox2, and Myc) was used to induce the expression of proteins related to a pluripotent status in liver cancer cells. RESULTS: Hep3B cells (null p53) exhibited a higher efficiency of reprogramming in comparison to the other liver cancer cell lines. The reprogrammed Hep3B cells acquired similar characteristics to pluripotent stem cells. However, loss of stemness in Hep3B-iPCs was detected during continual passage. CONCLUSIONS: We demonstrated that reprogramming was achieved in tumor cells through retroviral induction of genes associated with reprogramming. Interestingly, the reprogrammed pluripotent cancer cells (iPCs) were very different from original cancer cells in terms of colony shape and expressed markers. The induction of pluripotency of liver cancer cells correlated with the status of p53, suggesting that different expression level of p53 in cancer cells may affect their reprogramming.


Subject(s)
Carcinoma, Hepatocellular , Cell Line , Genetic Background , Induced Pluripotent Stem Cells , Liver Neoplasms , Pluripotent Stem Cells , Transcription Factors , Zidovudine
10.
Tissue Engineering and Regenerative Medicine ; (6): 740-749, 2016.
Article in English | WPRIM | ID: wpr-647606

ABSTRACT

Pluripotent stem cells can differentiate into many cell types including mature hepatocytes, and can be used in the development of new drugs, treatment of diseases, and in basic research. In this study, we established a protocol leading to efficient hepatic differentiation, and compared the capacity to differentiate into the hepatocyte lineage of human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). Optimal combinations of cytokines and growth factors were added to embryoid bodies produced by both types of cell. Differentiation of the cells was assessed with optical and electron microscopes, and hepatic-specific transcripts and proteins were detected by quantitative reverse transcription polymerase chain reaction and immunocytochemistry, respectively. Both types of embryoid body produced polygonal hepatocyte-like cells accompanied by time-dependent up regulation of genes for α-fetoprotein, albumin (ALB), asialoglycoprotein1, CK8, CK18, CK19, CYP1A2, and CYP3A4, which are expressed in fetal and adult hepatocytes. Both types of cell displayed functions characteristic of mature hepatocytes such as accumulation of glycogen, secretion of ALB, and uptake of indocyanine green. And these cells are transplanted into mouse model. Our findings indicate that hESCs and hiPSCs have similar abilities to differentiate into hepatocyte in vitro using the protocol developed here, and these cells are transplantable into damaged liver.


Subject(s)
Adult , Animals , Humans , Mice , Cytochrome P-450 CYP1A2 , Cytochrome P-450 CYP3A , Cytokines , Embryoid Bodies , Glycogen , Hepatocytes , Human Embryonic Stem Cells , Immunohistochemistry , In Vitro Techniques , Indocyanine Green , Induced Pluripotent Stem Cells , Intercellular Signaling Peptides and Proteins , Liver , Pluripotent Stem Cells , Polymerase Chain Reaction , Reverse Transcription , Up-Regulation
11.
Experimental & Molecular Medicine ; : e225-2016.
Article in English | WPRIM | ID: wpr-137222

ABSTRACT

BCL-2 interacting cell death suppressor (BIS), which is ubiquitously expressed, has important roles in various cellular processes, such as apoptosis, the cellular stress response, migration and invasion and protein quality control. In particular, BIS is highly expressed in skeletal and cardiac muscles, and BIS gene mutations result in human myopathy. In this study, we show that mRNA and protein levels of BIS were markedly increased during skeletal myogenesis in C2C12 cells and mouse satellite cells. BIS knockdown did not prevent the early stage of skeletal myogenesis, but did induce muscle atrophy and a decrease in the diameter of myotubes. BIS knockdown significantly suppressed the expression level of myosin heavy chain (MyHC) without changing the expression levels of myogenic marker proteins, such as Mgn, Cav-3 and MG53. In addition, BIS endogenously interacted with MyHC, and BIS knockdown induced MyHC ubiquitination and degradation. From these data, we conclude that molecular association of MyHC and BIS is necessary for MyHC stabilization in skeletal muscle.


Subject(s)
Animals , Humans , Mice , Apoptosis , Cell Death , Muscle Development , Muscle Fibers, Skeletal , Muscle, Skeletal , Muscular Atrophy , Muscular Diseases , Myocardium , Myosin Heavy Chains , Myosins , Quality Control , RNA, Messenger , Ubiquitin , Ubiquitination
12.
Experimental & Molecular Medicine ; : e225-2016.
Article in English | WPRIM | ID: wpr-137219

ABSTRACT

BCL-2 interacting cell death suppressor (BIS), which is ubiquitously expressed, has important roles in various cellular processes, such as apoptosis, the cellular stress response, migration and invasion and protein quality control. In particular, BIS is highly expressed in skeletal and cardiac muscles, and BIS gene mutations result in human myopathy. In this study, we show that mRNA and protein levels of BIS were markedly increased during skeletal myogenesis in C2C12 cells and mouse satellite cells. BIS knockdown did not prevent the early stage of skeletal myogenesis, but did induce muscle atrophy and a decrease in the diameter of myotubes. BIS knockdown significantly suppressed the expression level of myosin heavy chain (MyHC) without changing the expression levels of myogenic marker proteins, such as Mgn, Cav-3 and MG53. In addition, BIS endogenously interacted with MyHC, and BIS knockdown induced MyHC ubiquitination and degradation. From these data, we conclude that molecular association of MyHC and BIS is necessary for MyHC stabilization in skeletal muscle.


Subject(s)
Animals , Humans , Mice , Apoptosis , Cell Death , Muscle Development , Muscle Fibers, Skeletal , Muscle, Skeletal , Muscular Atrophy , Muscular Diseases , Myocardium , Myosin Heavy Chains , Myosins , Quality Control , RNA, Messenger , Ubiquitin , Ubiquitination
13.
Hanyang Medical Reviews ; : 222-228, 2015.
Article in English | WPRIM | ID: wpr-29870

ABSTRACT

Muscle stem cells, which are known as satellite cells have heterogeneous components of committed myogenic progenitors, non-committed satellite cells, and mesenchymal stem cells. This distinguishing organization of self-renewal and differentiation capacities encourages the remarkable regenerative ability of skeletal muscles. Lately it has been proved that the satellite cell is the derivation of muscle regeneration and with the self-renew function, it roles as a true muscle stem cell. Therefore, stem cell therapy using satellite cells is considered to be ideal therapy for muscular dystrophies, which is deficient in specific muscle protein and causes muscle degeneration. Especially, Duchenne Muscular Dystrophy (DMD), which is caused by mutations at the dystrophin gene, has been targeted by much research. In this article the satellite cell characteristics, regulation of cell function, and stem cell therapy for DMD and the present progressive clinical trials will be reviewed.


Subject(s)
Dystrophin , Mesenchymal Stem Cells , Muscle Proteins , Muscle, Skeletal , Muscular Dystrophies , Muscular Dystrophy, Duchenne , Regeneration , Satellite Cells, Skeletal Muscle , Stem Cells
14.
Experimental & Molecular Medicine ; : e58-2013.
Article in English | WPRIM | ID: wpr-209545

ABSTRACT

Salivary function in mammals may be defective for various reasons, such as aging, Sjogren's syndrome or radiation therapy in head and neck cancer patients. Recently, tissue-specific stem cell therapy has attracted public attention as a next-generation therapeutic reagent. In the present study, we isolated tissue-specific stem cells from the human submandibular salivary gland (hSGSCs). To efficiently isolate and amplify hSGSCs in large amounts, we developed a culture system (lasting 4-5 weeks) without any selection. After five passages, we obtained adherent cells that expressed mesenchymal stem cell surface antigen markers, such as CD44, CD49f, CD90 and CD105, but not the hematopoietic stem cell markers, CD34 and CD45, and that were able to undergo adipogenic, osteogenic and chondrogenic differentiation. In addition, hSGSCs were differentiated into amylase-expressing cells by using a two-step differentiation method. Transplantation of hSGSCs to radiation-damaged rat salivary glands rescued hyposalivation and body weight loss, restored acinar and duct cell structure, and decreased the amount of apoptotic cells. These data suggest that the isolated hSGSCs, which may have characteristics of mesenchymal-like stem cells, could be used as a cell therapy agent for the damaged salivary gland.


Subject(s)
Animals , Humans , Male , Rats , Amylases/genetics , Antigens, CD/genetics , Apoptosis , Cell Differentiation , Mesenchymal Stem Cells/cytology , Radiation Injuries, Experimental , Rats, Wistar , Regeneration , Salivary Glands/cytology , Salivation , Stem Cell Transplantation
15.
Experimental & Molecular Medicine ; : 8-13, 2007.
Article in English | WPRIM | ID: wpr-37560

ABSTRACT

Human SIRT1 controls various physiological responses including cell fate, stress, and aging, through deacetylation of its specific substrate protein. In processing DNA damage signaling, SIRT1 attenuates a cellular apoptotic response by deacetylation of p53 tumor suppressor. The present study shows that, upon exposure to radiation, SIRT1 could enhance DNA repair capacity and deacetylation of repair protein Ku70. Ectopically over-expressed SIRT1 resulted in the increase of repair of DNA strand breakages produced by radiation. On the other hand, repression of endogenous SIRT1 expression by SIRT1 siRNA led to the decrease of this repair activity, indicating that SIRT1 can regulate DNA repair capacity of cells with DNA strand breaks. In addition, we found that SIRT1 physically complexed with repair protein Ku70, leading to subsequent deacetylation. The dominant-negative SIRT1, a catalytically inactive form, did not induce deacetylation of Ku70 protein as well as increase of DNA repair capacity. These observations suggest that SIRT1 modulates DNA repair activity, which could be regulated by the acetylation status of repair protein Ku70 following DNA damage.


Subject(s)
Humans , Sirtuins/genetics , RNA, Small Interfering/genetics , DNA-Binding Proteins/metabolism , DNA Repair/genetics , DNA/genetics , Cell Line , Antigens, Nuclear/metabolism , Acetylation
SELECTION OF CITATIONS
SEARCH DETAIL